UNBIASED COORDINATE TRANSFORMATION

PMM Vol. 40, № 4, 1976, pp. 736-739
L. E. SHIROKOV
(Moscow)

(Received April 29, 1975)
We have obtained formulas for the unbiased transition from one coordinate system to another, when the angles defining the relative positions of the coordinate systems are measured with errors. The cases of symmetric and asymmertic distributions of measurement errors are considered. The transition from one coordinate system to another in the trajectory problems of flight dynamics is effected by formulas (see [1], for example) which assume exact knowledge of the angles defining the relative position of the coordinate systems. Since these angles are usually measured with errors, the coordinate transformation is carried out erroneously, and the transition formulas give a bias to the coordinates. This bias is undesirable for two reasons: firstly, it leads to systematic errors which are substantial when solving a number of problems (navigational problems, for instance), and secondly, they are practically unfilterable. However, it is possible to construct transition formulas which ensure an unbiased coordinate transformation.

Fig. 1
In this paper we give a method for obtaining these formulas under a symmetric and an asymmetric distribution of angle measurement errors, and as an example we compute the matrices of unbiased transition for the following pairs of coordinate systems (Fig. 1): terrestrial $O X_{t} Y_{t} Z_{t}$-- body-axes $O X Y Z$, bodyaxes $O X Y Z$ - flow-axes $O X_{f} Y_{f} Z_{f}$, body-axes $O X Y Z$ - beam-axes $O X_{b} Y_{b} Z_{b}$ The essence of the method is the preliminary computation of the magnitude of the bias and, on the basis of this, the determination of corrections to the expressions for the direction cosines, such that the bias becomes equal to zero.

1. Unbiased coordinate transformation under aymetric angle measurement error distribution. First of all we note that the direction cosines
for the transition from one coordinate system to another are polynomials $P_{\mu \nu}(\mu, v=1$, 2 , 3) of some degree $n(n \geqslant 1)$ of functions of the sines and cosines of the angles $\varphi_{1}^{\circ} i=$ $1, \ldots, p$) defining the mutual position of the coordinate systems

$$
P_{\mu \nu}=P_{\mu \nu}\left(\sin \varphi_{1}{ }^{\circ}, \cos \varphi_{1}{ }^{\circ}, \ldots, \sin \varphi_{2}{ }^{\circ}, \cos \varphi_{p}{ }^{\circ}\right)
$$

Let the angles $\varphi_{i}{ }^{\circ}$ be measured with errors ξ_{i}

$$
\varphi_{i}=\varphi_{i}{ }^{0}+\xi_{i}, \quad i=1, \ldots, p
$$

and let the distribution F_{g} of the error vector $\xi=\left(\xi_{1}, \ldots, \xi_{p}\right)$ be symmetric (for example, normal) with the parameters $\left\langle\xi_{i}\right\rangle=0$ and $\left\langle\xi_{i} \xi_{j}\right\rangle=\sigma_{i j}$. The problem is to find a function $a_{\mu \nu}\left(\varphi_{1}, \ldots, \varphi_{p}\right)$ of the measured values φ_{i} of the angles $\varphi_{i}{ }^{\circ}$, such that the condition
is satisfied.

$$
\left\langle a_{\mu \nu}\left(\varphi_{1}, \ldots, \varphi_{p}\right)\right\rangle=P_{\mu \nu}
$$

Using the trigonometric formulas for the sum and the difference of functions, we can transform the polynomial $P_{\mu \nu}\left(\sin \varphi_{1}{ }^{\circ}, \cos \varphi_{1}{ }^{\circ}, \ldots, \sin \varphi p^{\circ}, \cos \varphi p^{\circ}\right)$ into a homogeneous first-degree polynomial of the functions sine and cosine of the linearly transformed arguments. The mean of a sum equals the sum of the means and a constant factor is taken outside of the sign for the mean; therefore, it is sufficient to obtain the problem's solution for the two elementary polynomials: $P_{s}=\sin m^{\circ}$ and $P_{c}=\cos m^{\circ}$, where m° is some linear combination of the angles: $m^{\circ}=a_{1} \varphi_{1}{ }^{\circ}+\ldots+a_{p} \varphi_{p}, a_{i}= \pm 1$.

Let us compute $\langle\sin m\rangle$ and $\langle\cos m\rangle$, where $m=a_{1} \varphi_{1}+\ldots+a_{p \varphi p}$, under the assumption that the semi-invariants of distribution $F_{弓}$ of higher than second order equal zero (this assumption is satisfied for a normal distribution). Denoting $\Delta=m-m^{\circ}$, we have

$$
\begin{aligned}
& \langle\sin m\rangle=\left\langle\sin \left(\Delta+m^{\circ}\right)\right\rangle=\cos m^{\circ}\langle\sin \Delta\rangle+\sin m^{\circ}\langle\cos \Delta\rangle \\
& \langle\cos m\rangle=\left\langle\cos \left(\Delta+m^{\circ}\right)\right\rangle=\cos m^{\circ}\langle\cos \Delta\rangle-\sin m^{\circ}\langle\sin \Delta\rangle
\end{aligned}
$$

We compute $\langle\sin \Delta\rangle$ and $\langle\cos \Delta\rangle$ by the method proposed in the Appendix in [2]

$$
\begin{gathered}
\langle\sin \Delta\rangle=\langle\Delta\rangle-\frac{1}{3!}\left\langle\Delta^{3}\right\rangle+\ldots+(-1)^{n} \frac{1}{(2 n+1)!}\left\langle\Delta^{2 n+1}\right\rangle+\ldots=0 \\
\langle\cos \Delta\rangle=1-\frac{\sigma^{2}}{2}+\frac{1}{2!}\left(\frac{\sigma^{2}}{2}\right)^{2}-\ldots+(-1)^{n} \frac{1}{(2 n-1)!}\left(\frac{\sigma^{2}}{2}\right)^{n}+\ldots=\exp \left(-\frac{\sigma^{2}}{2}\right) \\
\sigma^{2}=\left\langle\Delta^{2}\right\rangle=\sum_{i=1}^{p} \sum_{j=1}^{p} a_{i} a_{j} J_{i j}
\end{gathered}
$$

Consequently,

$$
\begin{equation*}
\langle\sin m\rangle=\exp \left(-\frac{\sigma^{2}}{2}\right) \sin m^{\circ}, \quad\langle\cos m\rangle=\exp \left(-\frac{\sigma^{2}}{2}\right) \cos m^{\circ} \tag{1.1}
\end{equation*}
$$

Hence we see that we need to take

$$
\begin{equation*}
a_{s}=\exp \left(\frac{\sigma^{2}}{2}\right) \sin m, \quad a_{c}=\exp \left(\frac{\sigma^{2}}{2}\right) \cos m \tag{1.2}
\end{equation*}
$$

as the unknown functions. Indeed, using (1.1), we find

$$
\left\langle\exp \left(\frac{\sigma^{2}}{2}\right) \sin m\right\rangle=\sin m^{\circ}, \quad\left\langle\exp \left(\frac{\sigma^{2}}{2}\right) \cos m\right\rangle=\cos m^{\circ}
$$

If the angle measurement errors are independent, then $\sigma^{2}=\sigma^{2}+\ldots+\sigma_{p}{ }^{2}\left(\sigma_{i}{ }^{2} \stackrel{\Delta}{=} \sigma_{i i}\right)$ and the inverse transformation of the expressions obtained is possible. As a result we find that each element of the matrix of unbiased transition differs from the corresponding direction cosine by a factor of the form $\exp \left(\sigma^{2} / 2\right)$.

Example 1. Let us find the element a_{11} of the matrix of unbiased transition from the body-axes coordinate system to the terrestrial. The direction cosine is

$$
P_{11}=\cos \psi \cos v=1 / 2 \cos (\psi+v)+1 / 2 \cos (\psi-v)
$$

Further, by formulas (1.2)

$$
a_{11}^{ \pm}=\exp \left(\frac{\sigma_{\psi \psi} \pm 2 J_{\psi v}+\sigma_{v v}}{2}\right) \cos (\psi \pm v)
$$

Consequently

$$
\begin{aligned}
& a_{11}=a_{11}++a_{11}-=\frac{1}{2} \exp \left(\frac{\sigma_{\psi \psi}+2 \sigma_{\psi v}+\sigma_{v v}}{2}\right) \cos (\psi+v)+ \\
& \quad \frac{1}{2} \exp \left(\frac{\sigma_{\psi \psi}-2 \sigma_{\phi v}+\sigma_{v v}}{2}\right) \cos (\psi-v)
\end{aligned}
$$

If the measurement errors for ψ and v are independent, then $\sigma_{\psi v}=0$ and

$$
a_{11}=\exp \left(\frac{\sigma_{\psi}^{2}+\sigma_{v}^{2}}{2}\right) \cos \psi \cos v
$$

The elements of the matrices of unbiased transtion for the coordinate systerns mentioned in the introduction are computed similarly:
terrestrial axes $O X_{t} Y_{t} Z_{t}$ - body-axes $O X Y Z$

body-axes $O X Y Z$ - flow-axes $O X_{f} Y_{f} Z_{f}$

$$
\left\|\begin{array}{ccc}
c_{\alpha} c_{\beta} \cos \alpha \cos \beta & c_{\alpha} \sin \alpha & -c_{\alpha} c_{\beta} \cos \alpha \sin \beta \\
-c_{\alpha} c_{\beta} \sin \alpha \cos \beta & c_{\alpha} \cos \alpha & c_{\alpha} c_{\beta} \sin \alpha \sin \beta \\
c_{\beta} \sin \beta & 0 & c_{\beta} \cos \beta
\end{array}\right\|
$$

body-axes $O X Y Z$ - beam-axes $O X_{b} Y_{6} Z_{b}$

$$
\left\|\begin{array}{ccc}
c_{y} c_{z} \cos \varphi_{u} \cos \varphi_{z} & c_{y} c_{z} \cos \varphi_{y} \sin \varphi_{z} & -c_{y} \sin \varphi_{y} \\
-c_{z} \sin \varphi_{z} & c_{z} \cos \varphi_{z} & 0 \\
c_{y} c_{z} \sin \varphi_{y} \cos \varphi_{z} & c_{y} c_{z} \sin \varphi_{y} \sin \varphi_{z} & c_{y} \cos \varphi_{y}
\end{array}\right\|
$$

Here

$$
c_{\lambda}=\exp \frac{\sigma_{\lambda}{ }^{2}}{2} \quad(\lambda=\psi, v, \gamma, \alpha, \beta), \quad c_{y}=\exp \frac{\sigma_{\varphi}^{2}}{2}, \quad c_{z}=\exp \frac{\sigma_{\varphi_{z}^{2}}^{2}}{2}
$$

2, Unbiased coordinate trantormation under an atymmetric angle mesurement crror distribution, Let the distribution F_{ξ} of the error vector $\xi=\left\langle\xi_{1}, \ldots, \xi_{p}\right)$ be asymmetric with the parameters $\left\langle\xi_{i}\right\rangle=0,\left\langle\xi_{i} \xi_{j}\right\rangle=\sigma_{i j}$, $\left\langle\xi_{i} \xi_{j} \xi_{k}\right\rangle=s_{i j k}$. In other respects the problem's statement remains as before. The solving differs only in that now the means of $\langle\sin \Delta\rangle$ and $\langle\cos \Delta\rangle$ are computed under the assumption that the semi-invariants of the distribution F_{ξ} of higher than third order equal zero

$$
\begin{aligned}
& \langle\sin \Delta\rangle=0-\frac{s}{3!}+\frac{s}{3!} \frac{\sigma^{2}}{2}-\ldots+(-1)^{n} \frac{s}{3!} \frac{1}{(n-1)!}\left(\frac{\sigma^{2}}{2}\right)^{n-1}+\ldots \\
& \quad \frac{1}{3!}\left(\frac{s}{3!}\right)^{3}-\frac{1}{3!}\left(\frac{s}{3!}\right)^{3} \frac{\sigma^{2}}{2}+\ldots+(-1)^{n} \frac{1}{3!}\left(\frac{s}{3!}\right)^{3} \frac{1}{(n-4)!}\left(\frac{\sigma^{2}}{2}\right)^{n-4}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \quad=-\frac{s}{3!} \exp \left(-\frac{\sigma^{2}}{2}\right)+\frac{1}{3!}\left(\frac{s}{3!}\right)^{3} \exp \left(-\frac{\sigma^{2}}{2}\right)-\ldots= \\
& -\exp \left(-\frac{\sigma^{2}}{2}\right) \sin \frac{s}{6}, \quad s=\left\langle\Delta^{3}\right\rangle=\sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{k=3}^{p} a_{i} a_{j} a_{k} s_{i j k} \\
& \langle\cos \Delta\rangle=1-\frac{\sigma^{2}}{2}+\ldots+(-1)^{n} \frac{1}{n!}\left(\frac{\sigma^{2}}{2}\right)^{n}+\ldots-\frac{1}{2!}\left(\frac{s}{3!}\right)^{2}+\ldots \\
& \quad+(-1)^{n} \frac{1}{2!}\left(\frac{s}{3!}\right)^{2} \frac{1}{(n-3)!}\left(\frac{\sigma^{2}}{2}\right)^{n-3}+\ldots=\exp \left(-\frac{\sigma^{2}}{2}\right) \cos \frac{s}{6}
\end{aligned}
$$

Consequently

$$
\begin{align*}
& \langle\sin m\rangle=\exp \left(-\frac{\sigma^{2}}{2}\right) \sin \left(m^{\circ}-\frac{s}{6}\right) \tag{2,1}\\
& \langle\cos m\rangle=\exp \left(-\frac{\sigma^{2}}{2}\right) \cos \left(m^{\circ}-\frac{s}{6}\right)
\end{align*}
$$

and we need to take

$$
\begin{equation*}
a_{s}=\exp \left(\frac{\sigma^{2}}{2}\right) \sin \left(m+\frac{s}{6}\right), \quad a_{c}=\exp \left(\frac{5^{2}}{2}\right) \cos \left(m+\frac{s}{6}\right) \tag{2,2}
\end{equation*}
$$

as the unknown functions. If the angle measurement errors are independent, then

$$
\sigma^{2}=\sum_{i=4}^{p} \sigma_{i}^{2}, \quad s=\sum_{i=1}^{p} a_{i} s_{i} \quad\left(s_{i} \underline{\Delta} s_{i i i}\right)
$$

and each element of the matrix of unbiased transition differs from the corresponding direction cosine by a factor of form $\exp \left(\sigma^{2} / 2\right)$ and by an addition to the arguments of the functions sine and cosine of terms of the form $s / 6$.

Example 2. Once again let

$$
P_{11}=\cos \psi^{\circ} \cos \nu^{\circ}=1 / 2 \cos \left(\psi^{\circ}+\nu^{\circ}\right)+1 / 2 \cos \left(\psi^{\circ}-v^{\circ}\right)
$$

By formulas (2.2) we find

$$
a_{11}^{ \pm}=\exp \left(\frac{\sigma_{\psi \psi} \pm 2 \sigma_{\psi v}+\sigma_{v v}}{2}\right) \cos \left(\psi \pm v+\frac{s_{\psi \psi \psi} \pm s_{\psi \psi v}+s_{\psi v v} \pm s_{v v v}}{6}\right)
$$

As in Example 1, $a_{11}=a^{+}{ }_{11}+a_{11}$. With independent measurement errors for ψ and v we have $s_{\psi \psi v}=s_{\psi \nu v}=0$ and the expression for a_{11} simplifies considerably

$$
a_{11}=\exp \left(\frac{\sigma_{\psi}^{2}+\sigma_{v}^{2}}{2}\right) \cos \left(\psi+\frac{s_{\psi}}{6}\right) \cos \left(v+\frac{s_{v}}{6}\right)
$$

REFERENCES

1. Ostoslavskii, I, V, and Strazheva, I, V., Flight Dynamics, Aircraft Trajectories. Moscow, Mashinostroenie, 1969.
2. Shirokov, L. E. . Application of the theory of conditional Markov processes to the solving of one class of filtering problems. Avtomat. i Telemekhan. , № 12, 1968.
